Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Fresnel integrals as oscillatory integrals with positive real power phase functions and applications to asymptotic expansions (2005.12754v2)

Published 24 May 2020 in math.CA, math-ph, and math.MP

Abstract: In this paper, we first generalize the Fresnel integrals by changing of a path for integration in the proof of the Fresnel integrals by Cauchy's integral theorem. Next, according to oscillatory integral, we also obtain further generalization of the extended Fresnel integrals. Moreover by using this result, we have an asymptotic expansion of an oscillatory integral with a positive real parameter, for a phase function with a degenerate critical point expressed by positive real power, including a moderate oscillation, and for a suitable amplitude function. This result gives a finer extension of the stationary phase method in one variable, which is known as a method for an asymptotic expansion of an oscillatory integral of a phase function with a non-degenerate critical point.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.