Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Stress Testing of Models in a Classification Hierarchy (2005.12327v1)

Published 25 May 2020 in cs.AI and cs.LG

Abstract: Building a machine learning solution in real-life applications often involves the decomposition of the problem into multiple models of various complexity. This has advantages in terms of overall performance, better interpretability of the outcomes, and easier model maintenance. In this work we propose a Bayesian framework to model the interaction amongst models in such a hierarchy. We show that the framework can facilitate stress testing of the overall solution, giving more confidence in its expected performance prior to active deployment. Finally, we test the proposed framework on a toy problem and financial fraud detection dataset to demonstrate how it can be applied for any machine learning based solution, regardless of the underlying modelling required.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.