Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Incremental Real-Time Personalization in Human Activity Recognition Using Domain Adaptive Batch Normalization (2005.12178v2)

Published 25 May 2020 in cs.LG, eess.SP, and stat.ML

Abstract: Human Activity Recognition (HAR) from devices like smartphone accelerometers is a fundamental problem in ubiquitous computing. Machine learning based recognition models often perform poorly when applied to new users that were not part of the training data. Previous work has addressed this challenge by personalizing general recognition models to the unique motion pattern of a new user in a static batch setting. They require target user data to be available upfront. The more challenging online setting has received less attention. No samples from the target user are available in advance, but they arrive sequentially. Additionally, the motion pattern of users may change over time. Thus, adapting to new and forgetting old information must be traded off. Finally, the target user should not have to do any work to use the recognition system by, say, labeling any activities. Our work addresses all of these challenges by proposing an unsupervised online domain adaptation algorithm. Both classification and personalization happen continuously and incrementally in real time. Our solution works by aligning the feature distributions of all subjects, be they sources or the target, in hidden neural network layers. To this end, we normalize the input of a layer with user-specific mean and variance statistics. During training, these statistics are computed over user-specific batches. In the online phase, they are estimated incrementally for any new target user.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.