Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite difference and numerical differentiation: General formulae from deferred corrections

Published 24 May 2020 in math.NA and cs.NA | (2005.11754v1)

Abstract: This paper provides a new approach to derive various arbitrary high order finite difference formulae for the numerical differentiation of analytic functions. In this approach, various first and second order formulae for the numerical approximation of analytic functions are given with error terms explicitly expanded as Taylor series of the analytic function. These lower order approximations are successively improved by one or two (two order improvement for centered formulae) to give finite difference formulae of arbitrary high order. The new approach allows to recover the standard backward, forward, and centered finite difference formulae which are given in terms of formal power series of finite difference operators. Examples of new formulae suited for deferred correction methods are given.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.