Stability analysis of multi-term fractional-differential equations with three fractional derivatives (2005.11486v1)
Abstract: Necessary and sufficient stability and instability conditions are obtained for multi-term homogeneous linear fractional differential equations with three Caputo derivatives and constant coefficients. In both cases, fractional-order-dependent as well as fractional-order-independent characterisations of stability and instability properties are obtained, in terms of the coefficients of the multi-term fractional differential equation. The theoretical results are exemplified for the particular cases of the Basset and Bagley-Torvik equations, as well as for a multi-term fractional differential equation of an inextensible pendulum with fractional damping terms, and for a fractional harmonic oscillator.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.