Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Maki-Thompson rumor model on infinite Cayley trees

Published 23 May 2020 in math.PR and physics.soc-ph | (2005.11440v2)

Abstract: In this paper we study the Maki-Thompson rumor model on infinite Cayley trees. The basic version of the model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals: ignorants, spreaders and stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after a contact with other (nearest neighbor) spreaders, or stiflers. In this work we study this model on infinite Cayley trees, which is formulated as a continuous-times Markov chain, and we extend our analysis to the generalization in which each spreader ceases to propagate the rumor right after being involved in a given number of stifling experiences. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.