Papers
Topics
Authors
Recent
Search
2000 character limit reached

$*$-Jordan-type maps on $C^{*}$-algebras

Published 23 May 2020 in math.OA | (2005.11430v1)

Abstract: Let $\mathfrak{A}$ and $\mathfrak{A}'$ be two $C*$-algebras with identities $I_{\mathfrak{A}}$ and $I_{\mathfrak{A}'}$, respectively, and $P_1$ and $P_2 = I_{\mathfrak{A}} - P_1$ nontrivial projections in $\mathfrak{A}$. In this paper we study the characterization of multiplicative $$-Jordan-type maps. In particular, if $\mathcal{M}$ is a factor von Neumann algebra then every bijective unital multiplicative $$-Jordan-type maps are $*$-ring isomorphisms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.