Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Identifying Key Sectors in the Regional Economy: A Network Analysis Approach Using Input-Output Data (2005.11285v2)

Published 22 May 2020 in econ.GN, physics.soc-ph, and q-fin.EC

Abstract: By applying network analysis techniques to large input-output system, we identify key sectors in the local/regional economy. We overcome the limitations of traditional measures of centrality by using random-walk based measures, as an extension of Blochl et al. (2011). These are more appropriate to analyze very dense networks, i.e. those in which most nodes are connected to all other nodes. These measures also allow for the presence of recursive ties (loops), since these are common in economic systems (depending to the level of aggregation, most firms buy from and sell to other firms in the same industrial sector). The centrality measures we present are well suited for capturing sectoral effects missing from the usual output and employment multipliers. We also develop an R package (xtranat) for the processing of data from IMPLAN(R) models and for computing the newly developed measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.