Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L2R2: Leveraging Ranking for Abductive Reasoning (2005.11223v2)

Published 22 May 2020 in cs.IR and cs.CL

Abstract: The abductive natural language inference task ($\alpha$NLI) is proposed to evaluate the abductive reasoning ability of a learning system. In the $\alpha$NLI task, two observations are given and the most plausible hypothesis is asked to pick out from the candidates. Existing methods simply formulate it as a classification problem, thus a cross-entropy log-loss objective is used during training. However, discriminating true from false does not measure the plausibility of a hypothesis, for all the hypotheses have a chance to happen, only the probabilities are different. To fill this gap, we switch to a ranking perspective that sorts the hypotheses in order of their plausibilities. With this new perspective, a novel $L2R2$ approach is proposed under the learning-to-rank framework. Firstly, training samples are reorganized into a ranking form, where two observations and their hypotheses are treated as the query and a set of candidate documents respectively. Then, an ESIM model or pre-trained LLM, e.g. BERT or RoBERTa, is obtained as the scoring function. Finally, the loss functions for the ranking task can be either pair-wise or list-wise for training. The experimental results on the ART dataset reach the state-of-the-art in the public leaderboard.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yunchang Zhu (6 papers)
  2. Liang Pang (94 papers)
  3. Yanyan Lan (87 papers)
  4. Xueqi Cheng (274 papers)
Citations (14)