Papers
Topics
Authors
Recent
Search
2000 character limit reached

Prototypical Q Networks for Automatic Conversational Diagnosis and Few-Shot New Disease Adaption

Published 19 May 2020 in cs.CL and cs.AI | (2005.11153v1)

Abstract: Spoken dialog systems have seen applications in many domains, including medical for automatic conversational diagnosis. State-of-the-art dialog managers are usually driven by deep reinforcement learning models, such as deep Q networks (DQNs), which learn by interacting with a simulator to explore the entire action space since real conversations are limited. However, the DQN-based automatic diagnosis models do not achieve satisfying performances when adapted to new, unseen diseases with only a few training samples. In this work, we propose the Prototypical Q Networks (ProtoQN) as the dialog manager for the automatic diagnosis systems. The model calculates prototype embeddings with real conversations between doctors and patients, learning from them and simulator-augmented dialogs more efficiently. We create both supervised and few-shot learning tasks with the Muzhi corpus. Experiments showed that the ProtoQN significantly outperformed the baseline DQN model in both supervised and few-shot learning scenarios, and achieves state-of-the-art few-shot learning performances.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.