Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Almost sure behavior of linearly edge-reinforced random walks on the half-line (2005.11135v2)

Published 22 May 2020 in math.PR

Abstract: We study linearly edge-reinforced random walks on $\mathbb{Z}_+$, where each edge ${x,x+1}$ has the initial weight $x{\alpha} \vee 1$, and each time an edge is traversed, its weight is increased by $\Delta$. It is known that the walk is recurrent if and only if $\alpha \leq 1$. The aim of this paper is to study the almost sure behavior of the walk in the recurrent regime. For $\alpha<1$ and $\Delta>0$, we obtain a limit theorem which is a counterpart of the law of the iterated logarithm for simple random walks. This reveals that the speed of the walk with $\Delta>0$ is much slower than $\Delta=0$. In the critical case $\alpha=1$, our (almost sure) bounds for the trajectory of the walk shows that there is a phase transition of the speed at $\Delta=2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.