Papers
Topics
Authors
Recent
2000 character limit reached

An Introduction to Neural Architecture Search for Convolutional Networks

Published 22 May 2020 in cs.LG, cs.NE, and stat.ML | (2005.11074v1)

Abstract: Neural Architecture Search (NAS) is a research field concerned with utilizing optimization algorithms to design optimal neural network architectures. There are many approaches concerning the architectural search spaces, optimization algorithms, as well as candidate architecture evaluation methods. As the field is growing at a continuously increasing pace, it is difficult for a beginner to discern between major, as well as emerging directions the field has followed. In this work, we provide an introduction to the basic concepts of NAS for convolutional networks, along with the major advances in search spaces, algorithms and evaluation techniques.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.