Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Misplaced Trust: Measuring the Interference of Machine Learning in Human Decision-Making (2005.10960v1)

Published 22 May 2020 in cs.HC, cs.AI, and cs.LG

Abstract: ML decision-aid systems are increasingly common on the web, but their successful integration relies on people trusting them appropriately: they should use the system to fill in gaps in their ability, but recognize signals that the system might be incorrect. We measured how people's trust in ML recommendations differs by expertise and with more system information through a task-based study of 175 adults. We used two tasks that are difficult for humans: comparing large crowd sizes and identifying similar-looking animals. Our results provide three key insights: (1) People trust incorrect ML recommendations for tasks that they perform correctly the majority of the time, even if they have high prior knowledge about ML or are given information indicating the system is not confident in its prediction; (2) Four different types of system information all increased people's trust in recommendations; and (3) Math and logic skills may be as important as ML for decision-makers working with ML recommendations.

Citations (45)

Summary

We haven't generated a summary for this paper yet.