Papers
Topics
Authors
Recent
2000 character limit reached

Singularities and syzygies of secant varieties of nonsingular projective curves

Published 21 May 2020 in math.AG | (2005.10906v1)

Abstract: In recent years, the equations defining secant varieties and their syzygies have attracted considerable attention. The purpose of the present paper is to conduct a thorough study on secant varieties of curves by settling several conjectures and revealing interaction between singularities and syzygies. The main results assert that if the degree of the embedding line bundle of a nonsingular curve of genus $g$ is greater than $2g+2k+p$ for nonnegative integers $k$ and $p$, then the $k$-th secant variety of the curve has normal Du Bois singularities, is arithmetically Cohen--Macaulay, and satisfies the property $N_{k+2, p}$. In addition, the singularities of the secant varieties are further classified according to the genus of the curve, and the Castelnuovo--Mumford regularities are also obtained as well. As one of the main technical ingredients, we establish a vanishing theorem on the Cartesian products of the curve, which may have independent interests and may find applications elsewhere.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.