Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Using the "Hidden" Genome to Improve Classification of Cancer Types (2005.10779v2)

Published 21 May 2020 in stat.ME

Abstract: It is increasingly common clinically for cancer specimens to be examined using techniques that identify somatic mutations. In principle these mutational profiles can be used to diagnose the tissue of origin, a critical task for the 3-5% of tumors that have an unknown primary site. Diagnosis of primary site is also critical for screening tests that employ circulating DNA. However, most mutations observed in any new tumor are very rarely occurring mutations, and indeed the preponderance of these may never have been observed in any previous recorded tumor. To create a viable diagnostic tool we need to harness the information content in this "hidden genome" of variants for which no direct information is available. To accomplish this we propose a multi-level meta-feature regression to extract the critical information from rare variants in the training data in a way that permits us to also extract diagnostic information from any previously unobserved variants in the new tumor sample. A scalable implementation of the model is obtained by combining a high-dimensional feature screening approach with a group-lasso penalized maximum likelihood approach based on an equivalent mixed-effect representation of the multilevel model. We apply the method to the Cancer Genome Atlas whole-exome sequencing data set including 3702 tumor samples across 7 common cancer sites. Results show that our multi-level approach can harness substantial diagnostic information from the hidden genome.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.