Papers
Topics
Authors
Recent
2000 character limit reached

SINDy-BVP: Sparse Identification of Nonlinear Dynamics for Boundary Value Problems (2005.10756v2)

Published 19 May 2020 in cs.CE

Abstract: We develop a data-driven model discovery and system identification technique for spatially-dependent boundary value problems (BVPs). Specifically, we leverage the sparse identification of nonlinear dynamics (SINDy) algorithm and group sparse regression techniques with a set of forcing functions and corresponding state variable measurements to yield a parsimonious model of the system. The approach models forced systems governed by linear or nonlinear operators of the form $L[u(x)] = f(x)$ on a prescribed domain $x \in [a, b]$. We demonstrate the approach on a range of example systems, including Sturm-Liouville operators, beam theory (elasticity), and a class of nonlinear BVPs. The generated data-driven model is used to infer both the operator and/or spatially-dependent parameters that describe the heterogenous, physical quantities of the system. Our SINDy-BVP framework will enables the characterization of a broad range of systems, including for instance, the discovery of anisotropic materials with heterogeneous variability.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.