Papers
Topics
Authors
Recent
2000 character limit reached

The Inverse G-Wishart Distribution and Variational Message Passing

Published 20 May 2020 in stat.ML and cs.LG | (2005.09876v3)

Abstract: Message passing on a factor graph is a powerful paradigm for the coding of approximate inference algorithms for arbitrarily graphical large models. The notion of a factor graph fragment allows for compartmentalization of algebra and computer code. We show that the Inverse G-Wishart family of distributions enables fundamental variational message passing factor graph fragments to be expressed elegantly and succinctly. Such fragments arise in models for which approximate inference concerning covariance matrix or variance parameters is made, and are ubiquitous in contemporary statistics and machine learning.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.