Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The spinor and tensor fields with higher spin on spaces of constant curvature (2005.09840v1)

Published 20 May 2020 in math.DG, hep-th, and math.RT

Abstract: In this article, we give all the Weitzenb\"ock-type formulas among the geometric first order differential operators on the spinor fields with spin $j+1/2$ over Riemannian spin manifolds of constant curvature. Then we find an explicit factorization formula of the Laplace operator raised to the power $j+1$ and understand how the spinor fields with spin $j+1/2$ are related to the spinors with lower spin. As an application, we calculate the spectra of the operators on the standard sphere and clarify the relation among the spinors from the viewpoint of representation theory. Next we study the case of trace-free symmetric tensor fields with an application to Killing tensor fields. Lastly we discuss the spinor fields coupled with differential forms and give a kind of Hodge-de Rham decomposition on spaces of constant curvature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube