The singular Weinstein conjecture (2005.09568v3)
Abstract: In this article, we investigate Reeb dynamics on $bm$-contact manifolds, previously introduced in [MiO], which are contact away from a hypersurface $Z$ but satisfy certain transversality conditions on $Z$. The study of these contact structures is motivated by that of contact manifolds with boundary. The search of periodic Reeb orbits on those manifolds thereby starts with a generalization of the well-known Weinstein conjecture. Contrary to the initial expectations, examples of compact $bm$-contact manifolds without periodic Reeb orbits outside $Z$ are provided. Furthermore, we prove that in dimension $3$, there are always infinitely many periodic orbits on the critical set if it is compact. We prove that traps for the $bm$-Reeb flow exist in any dimension. This investigation goes hand-in-hand with the Weinstein conjecture on non-compact manifolds having compact ends of convex type. In particular, we extend Hofer's arguments to open overtwisted contact manifolds that are $\mathbb R+$-invariant in the open ends, obtaining as a corollary the existence of periodic $bm$-Reeb orbits away from the critical set. The study of $bm$-Reeb dynamics is motivated by well-known problems in fluid dynamics and celestial mechanics, where those geometric structures naturally appear. In particular, we prove that the dynamics on positive energy level-sets in the restricted planar circular three-body problem are described by the Reeb vector field of a $b3$-contact form that admits an infinite number of periodic orbits at the critical set.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.