Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On some limitations of probabilistic models for dimension-reduction: Illustration in the case of probabilistic formulations of partial least squares (2005.09498v2)

Published 19 May 2020 in stat.ME

Abstract: Partial Least Squares (PLS) refer to a class of dimension-reduction techniques aiming at the identification of two sets of components with maximal covariance, to model the relationship between two sets of observed variables $x\in\mathbb{R}p$ and $y\in\mathbb{R}q$, with $p\geq 1, q\geq 1$. Probabilistic formulations have recently been proposed for several versions of the PLS. Focusing first on the probabilistic formulation of the PLS-SVD proposed by el Bouhaddani et al., we establish that the constraints on their model parameters are too restrictive and define particular distributions for $(x,y)$, under which components with maximal covariance (solutions of PLS-SVD) are also necessarily of respective maximal variances (solutions of principal components analyses of $x$ and $y$, respectively). We propose an alternative probabilistic formulation of PLS-SVD, no longer restricted to these particular distributions. We then present numerical illustrations of the limitation of the original model of el Bouhaddani et al. We also briefly discuss similar limitations in another latent variable model for dimension-reduction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.