Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Monotonic Multihead Attention for Streaming ASR

Published 19 May 2020 in eess.AS, cs.CL, cs.LG, and cs.SD | (2005.09394v3)

Abstract: We investigate a monotonic multihead attention (MMA) by extending hard monotonic attention to Transformer-based automatic speech recognition (ASR) for online streaming applications. For streaming inference, all monotonic attention (MA) heads should learn proper alignments because the next token is not generated until all heads detect the corresponding token boundaries. However, we found not all MA heads learn alignments with a na\"ive implementation. To encourage every head to learn alignments properly, we propose HeadDrop regularization by masking out a part of heads stochastically during training. Furthermore, we propose to prune redundant heads to improve consensus among heads for boundary detection and prevent delayed token generation caused by such heads. Chunkwise attention on each MA head is extended to the multihead counterpart. Finally, we propose head-synchronous beam search decoding to guarantee stable streaming inference.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.