Papers
Topics
Authors
Recent
2000 character limit reached

On the Choice of Auxiliary Languages for Improved Sequence Tagging

Published 19 May 2020 in cs.CL and cs.LG | (2005.09389v1)

Abstract: Recent work showed that embeddings from related languages can improve the performance of sequence tagging, even for monolingual models. In this analysis paper, we investigate whether the best auxiliary language can be predicted based on language distances and show that the most related language is not always the best auxiliary language. Further, we show that attention-based meta-embeddings can effectively combine pre-trained embeddings from different languages for sequence tagging and set new state-of-the-art results for part-of-speech tagging in five languages.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.