Papers
Topics
Authors
Recent
2000 character limit reached

Human-like general language processing

Published 19 May 2020 in q-bio.NC, cs.AI, and cs.LG | (2005.09175v2)

Abstract: Using language makes human beings surpass animals in wisdom. To let machines understand, learn, and use language flexibly, we propose a human-like general language processing (HGLP) architecture, which contains sensorimotor, association, and cognitive systems. The HGLP network learns from easy to hard like a child, understands word meaning by coactivating multimodal neurons, comprehends and generates sentences by real-time constructing a virtual world model, and can express the whole thinking process verbally. HGLP rapidly learned 10+ different tasks including object recognition, sentence comprehension, imagination, attention control, query, inference, motion judgement, mixed arithmetic operation, digit tracing and writing, and human-like iterative thinking process guided by language. Language in the HGLP framework is not matching nor correlation statistics, but a script that can describe and control the imagination.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.