Papers
Topics
Authors
Recent
2000 character limit reached

Spatio-Temporal Point Processes with Attention for Traffic Congestion Event Modeling

Published 15 May 2020 in cs.LG, stat.AP, and stat.ML | (2005.08665v2)

Abstract: We present a novel framework for modeling traffic congestion events over road networks. Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events. Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion. To model the non-homogeneous temporal dependence of the event on the past, we use a novel attention-based mechanism based on neural networks embedding for point processes. To incorporate the directional spatial dependence induced by the road network, we adapt the "tail-up" model from the context of spatial statistics to the traffic network setting. We demonstrate our approach's superior performance compared to the state-of-the-art methods for both synthetic and real data.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.