Papers
Topics
Authors
Recent
2000 character limit reached

Product Insights: Analyzing Product Intents in Web Search

Published 18 May 2020 in cs.IR | (2005.08591v2)

Abstract: Web search engines are frequently used to access information about products. This has increased in recent times with the rising popularity of e-commerce. However, there is limited understanding of what users search for and their intents when it comes to product search on the web. In this work, we study search logs from Bing web search engine to characterize user intents and study user behavior for product search. We propose a taxonomy of product intents by analyzing product search queries. This is a challenging task given that only 15%-17% of web search queries are about products. We train machine learning classifiers with query log features to classify queries based on intent with an overall F1-score of 78%. We further analyze various characteristics of product search queries in terms of search metrics like dwell time, success, popularity and session-specific information.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.