Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes (2005.08275v2)

Published 17 May 2020 in math.OC, cs.IT, and math.IT

Abstract: In this paper, we propose a class of efficient, accurate, and general methods for solving state-estimation problems with equality and inequality constraints. The methods are based on recent developments in variable splitting and partially observed Markov processes. We first present the generalized framework based on variable splitting, then develop efficient methods to solve the state-estimation subproblems arising in the framework. The solutions to these subproblems can be made efficient by leveraging the Markovian structure of the model as is classically done in so-called Bayesian filtering and smoothing methods. The numerical experiments demonstrate that our methods outperform conventional optimization methods in computation cost as well as the estimation performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.