Papers
Topics
Authors
Recent
2000 character limit reached

Tiering as a Stochastic Submodular Optimization Problem

Published 16 May 2020 in cs.IR and cs.LG | (2005.07893v1)

Abstract: Tiering is an essential technique for building large-scale information retrieval systems. While the selection of documents for high priority tiers critically impacts the efficiency of tiering, past work focuses on optimizing it with respect to a static set of queries in the history, and generalizes poorly to the future traffic. Instead, we formulate the optimal tiering as a stochastic optimization problem, and follow the methodology of regularized empirical risk minimization to maximize the \emph{generalization performance} of the system. We also show that the optimization problem can be cast as a stochastic submodular optimization problem with a submodular knapsack constraint, and we develop efficient optimization algorithms by leveraging this connection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.