Momentum with Variance Reduction for Nonconvex Composition Optimization
Abstract: Composition optimization is widely-applied in nonconvex machine learning. Various advanced stochastic algorithms that adopt momentum and variance reduction techniques have been developed for composition optimization. However, these algorithms do not fully exploit both techniques to accelerate the convergence and are lack of convergence guarantee in nonconvex optimization. This paper complements the existing literature by developing various momentum schemes with SPIDER-based variance reduction for non-convex composition optimization. In particular, our momentum design requires less number of proximal mapping evaluations per-iteration than that required by the existing Katyusha momentum. Furthermore, our algorithm achieves near-optimal sample complexity results in both non-convex finite-sum and online composition optimization and achieves a linear convergence rate under the gradient dominant condition. Numerical experiments demonstrate that our algorithm converges significantly faster than existing algorithms in nonconvex composition optimization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.