Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Statistical Equity: A Fairness Classification Objective (2005.07293v1)

Published 14 May 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Machine learning systems have been shown to propagate the societal errors of the past. In light of this, a wealth of research focuses on designing solutions that are "fair." Even with this abundance of work, there is no singular definition of fairness, mainly because fairness is subjective and context dependent. We propose a new fairness definition, motivated by the principle of equity, that considers existing biases in the data and attempts to make equitable decisions that account for these previous historical biases. We formalize our definition of fairness, and motivate it with its appropriate contexts. Next, we operationalize it for equitable classification. We perform multiple automatic and human evaluations to show the effectiveness of our definition and demonstrate its utility for aspects of fairness, such as the feedback loop.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.