Papers
Topics
Authors
Recent
2000 character limit reached

Existence and Uniqueness of Recursive Utility Models in $L_p$

Published 13 May 2020 in econ.TH and math.PR | (2005.07067v1)

Abstract: Recursive preferences, of the sort developed by Epstein and Zin (1989), play an integral role in modern macroeconomics and asset pricing theory. Unfortunately, it is non-trivial to establish the unique existence of a solution to recursive utility models. We show that the tightest known existence and uniqueness conditions can be extended to (i) Schorfheide, Song and Yaron (2018) recursive utilities and (ii) recursive utilities with `narrow framing'. Further, we sharpen the solution space of Borovicka and Stachurski (2019) from $L_1$ to $L_p$ so that the results apply to a broader class of modern asset pricing models. For example, using $L_2$ Hilbert space theory, we find the class of parameters which generate a unique $L_2$ solution to the Bansal and Yaron (2004) and Schorfheide, Song and Yaron (2018) models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.