Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mean-Field Game Analysis of SIR Model with Social Distancing

Published 14 May 2020 in q-bio.PE and physics.soc-ph | (2005.06758v2)

Abstract: The current COVID-19 pandemic has proven that proper control and prevention of infectious disease require creating and enforcing the appropriate public policies. One critical policy imposed by the policymakers is encouraging the population to practice social distancing (i.e. controlling the contact rate among the population). Here we pose a mean-field game model of individuals each choosing a dynamic strategy of making contacts, given the trade-off of gaining utility but also risking infection from additional contacts. We compute and compare the mean-field equilibrium (MFE) strategy, which assumes each individual acting selfishly to maximize its own utility, to the socially optimal strategy, which maximizes the total utility of the population. We prove that the optimal decision of the infected is always to make more contacts than the level at which it would be socially optimal, which reinforces the important role of public policy to reduce contacts of the infected (e.g. quarantining, sick paid leave). Additionally, we include cost to incentivize people to change strategies, when computing the socially optimal strategies. We find that with this cost, policies reducing contacts of the infected should be further enforced after the peak of the epidemic has passed. Lastly, we compute the price of anarchy (PoA) of this system, to understand the conditions under which large discrepancies between the MFE and socially optimal strategies arise, which is when intervening public policy would be most effective.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.