Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regge OPE blocks and light-ray operators

Published 13 May 2020 in hep-th | (2005.06343v3)

Abstract: We consider the structure of the operator product expansion (OPE) in conformal field theory by employing the OPE block formalism. The OPE block acted on the vacuum is promoted to an operator and its implications are examined on a non-vacuum state. We demonstrate that the OPE block is dominated by a light-ray operator in the Regge limit, which reproduces precisely the Regge behavior of conformal blocks when used inside scalar four-point functions. Motivated by this observation, we propose a new form of the OPE block, called the light-ray channel OPE block that has a well-behaved expansion dominated by a light-ray operator in the Regge limit. We also show that the two OPE blocks have the same asymptotic form in the Regge limit and confirm the assertion that the Regge limit of a pair of spacelike-separated operators in a Minkowski patch is equivalent to the OPE limit of a pair of timelike-separated operators associated with the original pair in a different Minkowski patch.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.