Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the relation of truncation and approximation errors for the set of solutions obtained by different numerical methods

Published 12 May 2020 in math.NA and cs.NA | (2005.06272v1)

Abstract: The truncation and approximation errors for the set of numerical solutions computed by methods based on the algorithms of different structure are calculated and analyzed for the case of the two-dimensional steady inviscid compressible flow. The truncation errors are calculated using a special postprocessor, while the approximation errors are obtained by the comparison of the numerical solution and the analytic one. The extent of the independence of errors for the numerical solutions may be estimated via the Pearson correlation coefficient that may be geometrically expressed by the angle between errors. Due to this reason, the angles between the approximation errors are computed and related with the corresponding angles between the truncation errors. The angles between the approximation errors are found to be far from zero that enables a posteriori estimation of the error norm. The analysis of the distances between these solutions provides another approach to the estimation of the error. The comparison of the error norms, obtained by these two procedures, is provided that demonstrates the acceptable values of their effectivity indices. The results of the approximation error norm estimation for the supersonic flows, containing shock waves, are presented. The measure concentration phenomenon and the algorithmic randomness give some insights into these results.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.