Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Machine Learning for Materials Developments in Metals Additive Manufacturing (2005.05235v1)

Published 11 May 2020 in physics.app-ph, cond-mat.mtrl-sci, and physics.comp-ph

Abstract: In metals additive manufacturing (AM), materials and components are concurrently made in a single process as layers of metal are fabricated on top of each other in the near-final topology required for the end-use product. Consequently, tens to hundreds of materials and part design degrees of freedom must be simultaneously controlled and understood; hence, metals AM is a highly interdisciplinary technology that requires synchronized consideration of physics, chemistry, materials science, physical metallurgy, computer science, electrical engineering, and mechanical engineering. The use of modern machine learning approaches to model these degrees of freedom can reduce the time and cost to elucidate the science of metals AM and to optimize the engineering of these complex, multidisciplinary processes. New machine learning techniques are not needed for most metals AM development; those used in other sects of materials science will also work for AM. Most prolifically, the density functional theory (DFT) community has used many of them since the early 2000s for evaluating numerous combinations of elements and crystal structures to discover new materials. This materials technologies-focused review introduces the basic mathematics and terminology of machine learning through the lens of metals AM, and then examines potential uses of machine learning to advance metals AM, highlighting the many parallels to previous efforts in materials science and manufacturing while also discussing new challenges and adaptations specific to metals AM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.