Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Interpretable Deep Representation Learning from Temporal Multi-view Data (2005.05210v3)

Published 11 May 2020 in stat.ML and cs.LG

Abstract: In many scientific problems such as video surveillance, modern genomics, and finance, data are often collected from diverse measurements across time that exhibit time-dependent heterogeneous properties. Thus, it is important to not only integrate data from multiple sources (called multi-view data), but also to incorporate time dependency for deep understanding of the underlying system. We propose a generative model based on variational autoencoder and a recurrent neural network to infer the latent dynamics for multi-view temporal data. This approach allows us to identify the disentangled latent embeddings across views while accounting for the time factor. We invoke our proposed model for analyzing three datasets on which we demonstrate the effectiveness and the interpretability of the model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.