Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cognitive-driven convolutional beamforming using EEG-based auditory attention decoding

Published 10 May 2020 in cs.SD, eess.AS, and eess.SP | (2005.04669v1)

Abstract: The performance of speech enhancement algorithms in a multi-speaker scenario depends on correctly identifying the target speaker to be enhanced. Auditory attention decoding (AAD) methods allow to identify the target speaker which the listener is attending to from single-trial EEG recordings. Aiming at enhancing the target speaker and suppressing interfering speakers, reverberation and ambient noise, in this paper we propose a cognitive-driven multi-microphone speech enhancement system, which combines a neural-network-based mask estimator, weighted minimum power distortionless response convolutional beamformers and AAD. To control the suppression of the interfering speaker, we also propose an extension incorporating an interference suppression constraint. The experimental results show that the proposed system outperforms the state-of-the-art cognitive-driven speech enhancement systems in challenging reverberant and noisy conditions.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.