Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Cascade Attribute Network: Decomposing Reinforcement Learning Control Policies using Hierarchical Neural Networks (2005.04213v1)

Published 7 May 2020 in cs.RO

Abstract: Reinforcement learning methods have been developed to achieve great success in training control policies in various automation tasks. However, a main challenge of the wider application of reinforcement learning in practical automation is that the training process is hard and the pretrained policy networks are hardly reusable in other similar cases. To address this problem, we propose the cascade attribute network (CAN), which utilizes its hierarchical structure to decompose a complicated control policy in terms of the requirement constraints, which we call attributes, encoded in the control tasks. We validated the effectiveness of our proposed method on two robot control scenarios with various add-on attributes. For some control tasks with more than one add-on attribute attribute, by directly assembling the attribute modules in cascade, the CAN can provide ideal control policies in a zero-shot manner.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.