Papers
Topics
Authors
Recent
Search
2000 character limit reached

A new obstruction for normal spanning trees

Published 6 May 2020 in math.CO | (2005.04150v1)

Abstract: In a paper from 2001 (Journal of the LMS), Diestel and Leader offered a proof that a connected graph has a normal spanning tree if and only if it does not contain a minor from two specific forbidden classes of graphs, all of cardinality $\aleph_1$. Unfortunately, their proof contains a gap, and their result is incorrect. In this paper, we construct a third type of obstruction: an $\aleph_1$-sized graph without a normal spanning tree that contains neither of the two types described by Diestel and Leader as a minor. Further, we show that any list of forbidden minors characterising the graphs with normal spanning trees must contain graphs of arbitrarily large cardinality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.