Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Predictive Taxi Dispatch via Network Flow Optimization (2005.02738v1)

Published 6 May 2020 in eess.SY and cs.SY

Abstract: In this paper, we discuss a large-scale fleet management problem in a multi-objective setting. We aim to seek a receding horizon taxi dispatch solution that serves as many ride requests as possible while minimizing the cost of relocating vehicles. To obtain the desired solution, we first convert the multi-objective taxi dispatch problem into a network flow problem, which can be solved using the classical minimum cost maximum flow (MCMF) algorithm. We show that a solution obtained using the MCMF algorithm is integer-valued; thus, it does not require any additional rounding procedure that may introduce undesirable numerical errors. Furthermore, we prove the time-greedy property of the proposed solution, which justifies the use of receding horizon optimization. For computational efficiency, we propose a linear programming method to obtain an optimal solution in near real time. The results of our simulation studies using real-world data for the metropolitan area of Seoul, South Korea indicate that the performance of the proposed predictive method is almost as good as that of the oracle that foresees the future.

Citations (5)

Summary

We haven't generated a summary for this paper yet.