Papers
Topics
Authors
Recent
2000 character limit reached

Contextualizing Hate Speech Classifiers with Post-hoc Explanation

Published 5 May 2020 in cs.CL, cs.IR, and cs.LG | (2005.02439v3)

Abstract: Hate speech classifiers trained on imbalanced datasets struggle to determine if group identifiers like "gay" or "black" are used in offensive or prejudiced ways. Such biases manifest in false positives when these identifiers are present, due to models' inability to learn the contexts which constitute a hateful usage of identifiers. We extract SOC post-hoc explanations from fine-tuned BERT classifiers to efficiently detect bias towards identity terms. Then, we propose a novel regularization technique based on these explanations that encourages models to learn from the context of group identifiers in addition to the identifiers themselves. Our approach improved over baselines in limiting false positives on out-of-domain data while maintaining or improving in-domain performance. Project page: https://inklab.usc.edu/contextualize-hate-speech/.

Citations (130)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.