Hermitian zero modes protected by nonnormality: Application of pseudospectra (2005.01704v2)
Abstract: Recently, it was established that there exists a direct relation between the non-Hermitian skin effects, -strong dependence of spectra on boundary conditions for non-Hermitian Hamiltonians-, and boundary zero modes for Hermitian topological insulators. On the other hand, in terms of the spectral theory, the skin effects can also be interpreted as instability of spectra for nonnormal (non-Hermitian) Hamiltonians. Applying the latter interpretation to the former relation, we develop a theory of zero modes with quantum anomaly for general Hermitian lattice systems. Our theory is applicable to a wide range of systems: Majorana chains, non-periodic lattices, and long-range hopping systems. We relate exact zero modes and quasi-zero modes of a Hermitian system to spectra and pseudospectra of a non-Hermitian system, respectively. These zero and quasi-zero modes of a Hermitian system are robust against a class of perturbations even if there is no topological protection. The robustness is measured by nonnormality of the corresponding non-Hermitian system. We also present explicit construction of such zero modes by using a graphical representation of lattice systems. Our theory reveals the presence of nonnormality-protected zero modes, as well as the usefulness of the nonnormality and pseudospectra as tools for topological and/or non-Hermitian physics.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.