Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining Message Flows using Recurrent Neural Networks for System-on-Chip Designs (2005.01574v1)

Published 29 Apr 2020 in cs.DC and cs.AI

Abstract: Comprehensive specifications are essential for various activities across the entire validation continuum for system-on-chip (SoC) designs. However, specifications are often ambiguous, incomplete, or even contain inconsistencies or errors. This paper addresses this problem by developing a specification mining approach that automatically extracts sequential patterns from SoC transaction-level traces such that the mined patterns collectively characterize system-level specifications for SoC designs. This approach exploits long short-term memory (LSTM) networks trained with the collected SoC execution traces to capture sequential dependencies among various communication events. Then, a novel algorithm is developed to efficiently extract sequential patterns on system-level communications from the trained LSTM models. Several trace processing techniques are also proposed to enhance the mining performance. We evaluate the proposed approach on simulation traces of a non-trivial multi-core SoC prototype. Initial results show that the proposed approach is capable of extracting various patterns on system-level specifications from the highly concurrent SoC execution traces.

Citations (6)

Summary

We haven't generated a summary for this paper yet.