Duoidal categories, measuring comonoids and enrichment (2005.01340v1)
Abstract: We extend the theory of Sweeder's measuring comonoids to the framework of duoidal categories: categories equipped with two compatible monoidal structures. We use one of the tensor products to endow the category of monoids for the other with an enrichment in the category of comonoids. The enriched homs are provided by the universal measuring comonoids. We study a number of duoidal structures on categories of graded objects and of species and the associated enriched categories, such as an enrichment of graded (twisted) monoids in graded (twisted) comonoids, as well as two enrichments of symmetric operads in symmetric cooperads.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.