Papers
Topics
Authors
Recent
Search
2000 character limit reached

Beta Jacobi ensembles and associated Jacobi polynomials

Published 3 May 2020 in math.PR | (2005.01100v2)

Abstract: Beta ensembles on the real line with three classical weights (Gaussian, Laguerre and Jacobi) are now realized as the eigenvalues of certain tridiagonal random matrices. The paper deals with beta Jacobi ensembles, the type with the Jacobi weight. Making use of the random matrix model, we show that in the regime where $\beta N \to const \in [0, \infty)$, with $N$ the system size, the empirical distribution of the eigenvalues converges weakly to a limiting measure which belongs to a new class of probability measures of associated Jacobi polynomials. This is analogous to the existing results for the other two classical weights. We also study the limiting behavior of the empirical measure process of beta Jacobi processes in the same regime and obtain a dynamic version of the above.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.