Papers
Topics
Authors
Recent
2000 character limit reached

Lupulus: A Flexible Hardware Accelerator for Neural Networks (2005.01016v1)

Published 3 May 2020 in eess.SP, cs.AR, and cs.CV

Abstract: Neural networks have become indispensable for a wide range of applications, but they suffer from high computational- and memory-requirements, requiring optimizations from the algorithmic description of the network to the hardware implementation. Moreover, the high rate of innovation in machine learning makes it important that hardware implementations provide a high level of programmability to support current and future requirements of neural networks. In this work, we present a flexible hardware accelerator for neural networks, called Lupulus, supporting various methods for scheduling and mapping of operations onto the accelerator. Lupulus was implemented in a 28nm FD-SOI technology and demonstrates a peak performance of 380 GOPS/GHz with latencies of 21.4ms and 183.6ms for the convolutional layers of AlexNet and VGG-16, respectively.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.