Papers
Topics
Authors
Recent
2000 character limit reached

Minerva: A Portable Machine Learning Microservice Framework for Traditional Enterprise SaaS Applications

Published 2 May 2020 in cs.SE and cs.LG | (2005.00866v1)

Abstract: In traditional SaaS enterprise applications, microservices are an essential ingredient to deploy ML models successfully. In general, microservices result in efficiencies in software service design, development, and delivery. As they become ubiquitous in the redesign of monolithic software, with the addition of machine learning, the traditional applications are also becoming increasingly intelligent. Here, we propose a portable ML microservice framework Minerva (microservices container for applied ML) as an efficient way to modularize and deploy intelligent microservices in traditional legacy SaaS applications suite, especially in the enterprise domain. We identify and discuss the needs, challenges and architecture to incorporate ML microservices in such applications. Minervas design for optimal integration with legacy applications using microservices architecture leveraging lightweight infrastructure accelerates deploying ML models in such applications.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.