Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimum Cuts in Geometric Intersection Graphs

Published 2 May 2020 in cs.CG | (2005.00858v3)

Abstract: Let $\mathcal{D}$ be a set of $n$ disks in the plane. The disk graph $G_\mathcal{D}$ for $\mathcal{D}$ is the undirected graph with vertex set $\mathcal{D}$ in which two disks are joined by an edge if and only if they intersect. The directed transmission graph $G{\rightarrow}_\mathcal{D}$ for $\mathcal{D}$ is the directed graph with vertex set $\mathcal{D}$ in which there is an edge from a disk $D_1 \in \mathcal{D}$ to a disk $D_2 \in \mathcal{D}$ if and only if $D_1$ contains the center of $D_2$. Given $\mathcal{D}$ and two non-intersecting disks $s, t \in \mathcal{D}$, we show that a minimum $s$-$t$ vertex cut in $G_\mathcal{D}$ or in $G{\rightarrow}_\mathcal{D}$ can be found in $O(n{3/2}\text{polylog} n)$ expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip $S$ bounded by two vertical lines, $L_\ell$ and $L_r$, and a collection $\mathcal{D}$ of disks. Let $a$ be a point in $S$ above all disks of $\mathcal{D}$, and let $b$ a point in $S$ below all disks of $\mathcal{D}$. The task is to find a curve from $a$ to $b$ that lies in $S$ and that intersects as few disks of $\mathcal{D}$ as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in $O(n{3/2}\text{polylog} n)$ expected time.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.