Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensions of Diversity in Human Perceptions of Algorithmic Fairness (2005.00808v3)

Published 2 May 2020 in cs.CY and cs.LG

Abstract: A growing number of oversight boards and regulatory bodies seek to monitor and govern algorithms that make decisions about people's lives. Prior work has explored how people believe algorithmic decisions should be made, but there is little understanding of how individual factors like sociodemographics or direct experience with a decision-making scenario may affect their ethical views. We take a step toward filling this gap by exploring how people's perceptions of one aspect of procedural algorithmic fairness (the fairness of using particular features in an algorithmic decision) relate to their (i) demographics (age, education, gender, race, political views) and (ii) personal experiences with the algorithmic decision-making scenario. We find that political views and personal experience with the algorithmic decision context significantly influence perceptions about the fairness of using different features for bail decision-making. Drawing on our results, we discuss the implications for stakeholder engagement and algorithmic oversight including the need to consider multiple dimensions of diversity in composing oversight and regulatory bodies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nina Grgić-Hlača (13 papers)
  2. Gabriel Lima (12 papers)
  3. Adrian Weller (150 papers)
  4. Elissa M. Redmiles (24 papers)
Citations (32)