Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Variational problems of splitting-type with mixed linear-superlinear growth conditions (2005.00790v2)

Published 2 May 2020 in math.AP

Abstract: Variational problems of splitting-type with mixed linear-superlinear growth conditions are considered. In the twodimensional case the minimizing problem is given by [ J [w] = \int_{\Omega} \Big[f_1\big(\partial_1 w\big) + f_2\big(\partial_2 w\big)\Big] \,dx \to \min ] w.r.t. a suitable class of comparison functions. Here $f_1$ is supposed to be a convex energy density with linear growth, $f_2$ is supposed to be of superlinear growth, for instance to be given by a $N$-function or just bounded from below by a $N$-function. One motivation for this kind of problem located between the well known splitting-type problems of superlinear growth and the splitting-type problems with linear growth (recently considered in [1]) is the link to mathematical problems in plasticity (compare [2]). Here we prove results on the appropriate way of relaxation including approximation procedures, duality, existence and uniqueness of solutions as well as some new higher integrability results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.