Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regularity for Orlicz phase problems (2106.15131v1)

Published 29 Jun 2021 in math.AP

Abstract: We provide comprehensive regularity results and optimal conditions for a general class of functionals involving Orlicz multi-phase of the type \begin{align} \label{abst:1} v\mapsto \int_{\Omega} F(x,v,Dv)\,dx, \end{align} exhibiting non-standard growth conditions and non-uniformly elliptic properties. The model functional under consideration is given by the Orlicz multi-phase integral \begin{align} \label{abst:2} v\mapsto \int_{\Omega} f(x,v)\left[ G(|Dv|) + \sum\limits_{k=1}{N}a_k(x)H_{k}(|Dv|) \right]\,dx,\quad N\geqslant 1, \end{align} where $G,H_{k}$ are $N$-functions and $ 0\leqslant a_{k}(\cdot)\in L{\infty}(\Omega) $ with $0 < \nu \leqslant f(\cdot) \leqslant L$. Its ellipticity ratio varies according to the geometry of the level sets ${a_{k}(x)=0}$ of the modulating coefficient functions $a_{k}(\cdot)$ for every $k\in {1,\ldots,N}$. We give a unified treatment to show various regularity results for such multi-phase problems with the coefficient functions ${a_{k}(\cdot)}_{k=1}{N}$ not necessarily H\"older continuous even for a lower level of the regularity. Moreover, assuming that minima of the functional above belong to better spaces such as $C{0,\gamma}(\Omega)$ or $L{\kappa}(\Omega)$ for some $\gamma\in (0,1)$ and $\kappa\in (1,\infty]$, we address optimal conditions on nonlinearity for each variant under which we build comprehensive regularity results. On the other hand, since there is a lack of homogeneity properties in the nonlinearity, we consider an appropriate scaling with keeping the structures of the problems under which we apply Harmonic type approximation in the setting varying on the a priori assumption on minima. We believe that the methods and proofs developed in this paper are suitable to build regularity theorems for a larger class of non-autonomous functionals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.